Applications of Artificial Neural Networks in Modeling Compressive Strength of Concrete: A State of the Art Review

نویسندگان

  • Vinay Chandwani
  • Vinay Agrawal
  • Ravindra Nagar
چکیده

Cement concrete is widely used throughout the world as a key construction material in civil engineering projects. Being a complex compound comprising of cement, sand, coarse aggregate, admixture and water, its compressive strength is a highly nonlinear function of its constituents, thereby making its modeling and prediction a difficult task. Nature inspired computational techniques, provide an efficient and easy approach for modeling complex, nonlinear or difficult to establish relationships between the independent and dependent variables. Artificial Neural Networks inspired by the learning ability of a human brain, can be regarded as an engineering counterpart of a biological neuron and its highly interconnected and parallel nature, gives them immense ability to learn from past examples capturing unknown relationships, making them a versatile tool for modeling the real world problems. The review paper is an attempt to provide an introduction to artificial neural networks, highlighting its applications as a computational tool for modeling complex functional relationships of various constituents influencing the compressive strength of concrete.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PREDICTION OF COMPRESSIVE STRENGTH AND DURABILITY OF HIGH PERFORMANCE CONCRETE BY ARTIFICIAL NEURAL NETWORKS

Neural networks have recently been widely used to model some of the human activities in many areas of civil engineering applications. In the present paper, artificial neural networks (ANN) for predicting compressive strength of cubes and durability of concrete containing metakaolin with fly ash and silica fume with fly ash are developed at the age of 3, 7, 28, 56 and 90 days. For building these...

متن کامل

Prediction of Pervious Concrete Permeability and Compressive Strength Using Artificial Neural Networks

Pervious concrete is a concrete mixture prepared from cement, aggregates, water, little or no fines, and in some cases admixtures. The hydrological property of pervious concrete is the primary reason for its reappearance in construction. Much research has been conducted on plain concrete, but little attention has been paid to porous concrete, particularly to the analytical prediction modeling o...

متن کامل

MODELING THE COMPRESSIVE STRENGTH OF CONCRETE MADE WITH EXPANDED PERLITE POWDER

In recent years, soft computing and artificial intelligence techniques such as artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) have been effectively used in various civil engineering applications. This study aims to examine the potential of ANN and ANFIS for modeling the compressive strength of concrete containing expanded perlite powder (EPP). For doing this, ...

متن کامل

Compressive Strength of Confined Concrete in CCFST Columns

This paper presents a new model for predicting the compressive strength of steel-confined concrete on circular concrete filled steel tube (CCFST) stub columns under axial loading condition based on Artificial Neural Networks (ANNs) by using a large wide of experimental investigations. The input parameters were selected based on past studies such as outer diameter of column, compressive strength...

متن کامل

EVALUATION OF CONCRETE COMPRESSIVE STRENGTH USING ARTIFICIAL NEURAL NETWORK AND MULTIPLE LINEAR REGRESSION MODELS

In the present study, two different data-driven models, artificial neural network (ANN) and multiple linear regression (MLR) models, have been developed to predict the 28 days compressive strength of concrete. Seven different parameters namely 3/4 mm sand, 3/8 mm sand, cement content, gravel, maximums size of aggregate, fineness modulus, and water-cement ratio were considered as input variables...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014